Thermal remote sensing

From Wikipedia, the free encyclopedia
Thermal Infrared Image by Mars Odyssey's thermal emission imaging system of Mars

Thermal remote sensing is a branch of remote sensing in the thermal infrared region of the electromagnetic spectrum.[1] Thermal radiation from ground objects is measured using a thermal band in satellite sensors.[2]

Principles[edit]

Thermal remote sensing is working on two major laws which are as follows:[2]

1. Stefan–Boltzmann law: Surface temperature of any objects radiate energy and shows specific properties. These properties are calculated by Boltzmann law.

2. Wien's displacement law: Wien's displacement law explains the relation between temperature and the wavelength of radiation. It states that the wavelength of radiation emitted from a blackbody is inversely proportional to the temperature of the black body.

Applications[edit]

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the Old Fire/Grand Prix fire east of Los Angeles

Thermal remote sensing is used in applications including:

  • Identification of geological units and structures[1]
  • Forest fires: Thermal remote sensing plays a vital role in the determination of Forest fire based on the principle of identifying fire pixel according to the temperature difference between the energy emitting from the surface and ambient temperature.[2]
  • Intelligence / military applications[13]
  • Heat loss from buildings[14]

Land Surface Temperature (LST)[edit]

One of the most important applications of thermal remote sensing in earth sciences is to calculate the Land Surface Temperature (LST). LST is a measurement of how hot the land is to the touch. It differs from air temperature (the temperature given in weather reports) because land heats and cools more quickly than air.[15] LST is a key variable that is required to accurately model the surface energy budge.[16] Thermal remote sensing from satellites to derive land surface temperatures has a long history that can be traced back to the TIROS-II satellite, launched in the early 60s.[17] From the outset certain problems were recognised when deriving temperatures over the land, most notably the low temperatures observed over deserts. To quantify the effects of the atmosphere and the surface (emissivity effects) and, both from theory and experiment, various algorithms developed to derive LST.[16] These algorithms are different in terms of accuracy and application.

Applications of Thermal Remote Sensing in Land Surface Temperature monitoring: LST maps of Karizland, Yazd, obtained from Landsat 8 and Landsat 9 thermal bands.

Satellites thermal bands[edit]

The Thematic Mapper (TM) sensor on Landsat 4 and Landsat 5 included a thermal (6th) band. Landsat 8 and Landsat-9 also acquires thermal data in two 10 and 11 bands from Thermal Infrared Sensor (TIRS).[18]

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) utilizes a unique combination of wide spectral coverage and high spatial resolution in the visible near-infrared through shortwave infrared to the thermal infrared regions. The ASTER instruments acquire thermal data in Thermal Infrared (TIR) 90 meter Bands (bands 10-14).

The Advanced Very High Resolution Radiometer (AVHRR) instrument on US National Oceanographic and Atmospheric Administration (NOAA) 9, 10, 11 and 12 had two bands in Thermal Infrared regions (bands 4, 5).[19]

Given recent developments in UAVs, thermal images with high spatial and temporal resolutions have become available at a low cost.

References[edit]

  1. ^ a b Prakash, Anupma (2000). "Thermal remote sensing: concepts, issues and applications" (PDF). International Archives of Photogrammetry and Remote Sensing. 33(B1, PART 1): 239–243.
  2. ^ a b c Payra, Swagata; Sharma, Ajay; Verma, Sunita (2023-01-01), Kumar Singh, Abhay; Tiwari, Shani (eds.), "Chapter 14 - Application of remote sensing to study forest fires", Atmospheric Remote Sensing, Earth Observation, Elsevier, pp. 239–260, doi:10.1016/b978-0-323-99262-6.00015-8, ISBN 978-0-323-99262-6, retrieved 2023-12-10
  3. ^ van der Meer, Freek; Hecker, Christoph; van Ruitenbeek, Frank; van der Werff, Harald; de Wijkerslooth, Charlotte; Wechsler, Carolina (2014-12-01). "Geologic remote sensing for geothermal exploration: A review". International Journal of Applied Earth Observation and Geoinformation. 33: 255–269. Bibcode:2014IJAEO..33..255V. doi:10.1016/j.jag.2014.05.007. ISSN 1569-8432.
  4. ^ Mansourmoghaddam, Mohammad; Rousta, Iman; Zamani, Mohammadsadegh; Olafsson, Haraldur (2023-04-01). "Investigating and predicting Land Surface Temperature (LST) based on remotely sensed data during 1987–2030 (A case study of Reykjavik city, Iceland)". Urban Ecosystems. 26 (2): 337–359. Bibcode:2023UrbEc..26..337M. doi:10.1007/s11252-023-01337-9. ISSN 1573-1642. S2CID 257680037.
  5. ^ Wang, Lingli; Qu, John J. (2009-06-01). "Satellite remote sensing applications for surface soil moisture monitoring: A review". Frontiers of Earth Science in China. 3 (2): 237–247. doi:10.1007/s11707-009-0023-7. ISSN 1673-7490.
  6. ^ Schmugge, Thomas J.; Kustas, William P.; Ritchie, Jerry C.; Jackson, Thomas J.; Rango, Al (2002-08-01). "Remote sensing in hydrology". Advances in Water Resources. 25 (8): 1367–1385. Bibcode:2002AdWR...25.1367S. doi:10.1016/S0309-1708(02)00065-9. ISSN 0309-1708.
  7. ^ Melis, Maria Teresa; Da Pelo, Stefania; Erbì, Ivan; Loche, Marco; Deiana, Giacomo; Demurtas, Valentino; Meloni, Mattia Alessio; Dessì, Francesco; Funedda, Antonio; Scaioni, Marco; Scaringi, Gianvito (January 2020). "Thermal Remote Sensing from UAVs: A Review on Methods in Coastal Cliffs Prone to Landslides". Remote Sensing. 12 (12): 1971. Bibcode:2020RemS...12.1971M. doi:10.3390/rs12121971. hdl:11584/291977. ISSN 2072-4292.
  8. ^ Devi, Gayathri K.; Ganasri, B. P.; Dwarakish, G. S. (2015-01-01). "Applications of Remote Sensing in Satellite Oceanography: A Review". Aquatic Procedia. INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN ENGINEERING (ICWRCOE'15). 4: 579–584. doi:10.1016/j.aqpro.2015.02.075. ISSN 2214-241X.
  9. ^ Zhang, J.; Wagner, W.; Prakash, A.; Mehl, H.; Voigt, S. (August 2004). "Detecting coal fires using remote sensing techniques". International Journal of Remote Sensing. 25 (16): 3193–3220. Bibcode:2004IJRS...25.3193Z. doi:10.1080/01431160310001620812. ISSN 0143-1161. S2CID 140197767.
  10. ^ Tronin, A. A. (2006-01-01). "Remote sensing and earthquakes: A review". Physics and Chemistry of the Earth, Parts A/B/C. Recent Progress in Seismo Electromagnetics and Related Phenomena. 31 (4): 138–142. Bibcode:2006PCE....31..138T. doi:10.1016/j.pce.2006.02.024. ISSN 1474-7065.
  11. ^ Weng, Qihao (2009-07-01). "Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends". ISPRS Journal of Photogrammetry and Remote Sensing. 64 (4): 335–344. Bibcode:2009JPRS...64..335W. doi:10.1016/j.isprsjprs.2009.03.007. ISSN 0924-2716.
  12. ^ McVicar, Tim R.; Jupp, David L. B. (1999-09-15). "Estimating one-time-of-day meteorological data from standard daily data as inputs to thermal remote sensing based energy balance models". Agricultural and Forest Meteorology. 96 (4): 219–238. Bibcode:1999AgFM...96..219M. doi:10.1016/S0168-1923(99)00052-0. ISSN 0168-1923.
  13. ^ Allison, Robert S.; Johnston, Joshua M.; Craig, Gregory; Jennings, Sion (August 2016). "Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring". Sensors. 16 (8): 1310. Bibcode:2016Senso..16.1310A. doi:10.3390/s16081310. ISSN 1424-8220. PMC 5017475. PMID 27548174.
  14. ^ Nguyen, Tran Xuan Bach; Rosser, Kent; Chahl, Javaan (October 2021). "A Review of Modern Thermal Imaging Sensor Technology and Applications for Autonomous Aerial Navigation". Journal of Imaging. 7 (10): 217. doi:10.3390/jimaging7100217. ISSN 2313-433X. PMC 8540138. PMID 34677303.
  15. ^ "Vegetation & Land Surface Temperature". earthobservatory.nasa.gov. 2023-07-31. Retrieved 2023-12-11.
  16. ^ a b Prata, A. J.; Caselles, V.; Coll, C.; Sobrino, J. A.; Ottlé, C. (2009). "Thermal remote sensing of land surface temperature from satellites: Current status and future prospects". Remote Sensing Reviews. 12 (3–4): 175–224. doi:10.1080/02757259509532285. ISSN 0275-7257.
  17. ^ Wark, D. Q.; Yamamoto, G.; Lienesch, J. H. (1962-09-01). "Methods of Estimating Infrared Flux and Surface Temperature from Meteorological Satellites". Journal of the Atmospheric Sciences. 19 (5): 369–384. Bibcode:1962JAtS...19..369W. doi:10.1175/1520-0469(1962)019<0369:MOEIFA>2.0.CO;2. ISSN 0022-4928.
  18. ^ "What are the band designations for the Landsat satellites? | U.S. Geological Survey". www.usgs.gov. Retrieved 2023-12-10.
  19. ^ "USGS EROS Archive - Advanced Very High Resolution Radiometer (AVHRR) - Sensor Characteristics | U.S. Geological Survey". www.usgs.gov. Retrieved 2023-12-11.