User:Jlp21k/Acetyltransferase/Bibliography

From Wikipedia, the free encyclopedia

You will be compiling your bibliography and creating an outline of the changes you will make in this sandbox.


Bibliography[edit]

References[edit]

1.     Marmorstein R, Zhou MM. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol. 2014 Jul 1;6(7):a018762. doi: 10.1101/cshperspect.a018762. PMID: 24984779; PMCID: PMC4067988.

2.     Verreault, A., Kaufman, P. D., Kobayashi, R., & Stillman, B. (1998). Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Current biology : CB, 8(2), 96–108. https://doi.org/10.1016/s0960-9822(98)70040-5

3.     Kim, A. R., Rylett, R. J., & Shilton, B. H. (2006). Substrate binding and catalytic mechanism of human choline acetyltransferase. Biochemistry, 45(49), 14621–14631. https://doi.org/10.1021/bi061536l

4.     Strauss, W. L., Kemper, R. R., Jayakar, P., Kong, C. F., Hersh, L. B., Hilt, D. C., & Rabin, M. (1991). Human choline acetyltransferase gene maps to region 10q11-q22.2 by in situ hybridization. Genomics, 9(2), 396–398. https://doi.org/10.1016/0888-7543(91)90273-h

5.     Coon, S. L., Mazuruk, K., Bernard, M., Roseboom, P. H., Klein, D. C., & Rodriguez, I. R. (1996). The human serotonin N-acetyltransferase (EC 2.3.1.87) gene (AANAT): structure, chromosomal localization, and tissue expression. Genomics, 34(1), 76–84. https://doi.org/10.1006/geno.1996.0243

6.     Arnesen, T., Van Damme, P., Polevoda, B., Helsens, K., Evjenth, R., Colaert, N., Varhaug, J. E., Vandekerckhove, J., Lillehaug, J. R., Sherman, F., & Gevaert, K. (2009). Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proceedings of the National Academy of Sciences of the United States of America, 106(20), 8157–8162. https://doi.org/10.1073/pnas.0901931106

7.     Van Damme, P., Lasa, M., Polevoda, B., Gazquez, C., Elosegui-Artola, A., Kim, D. S., De Juan-Pardo, E., Demeyer, K., Hole, K., Larrea, E., Timmerman, E., Prieto, J., Arnesen, T., Sherman, F., Gevaert, K., & Aldabe, R. (2012). N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 12449–12454. https://doi.org/10.1073/pnas.1210303109

8.     Hong, H., Cai, Y., Zhang, S., Ding, H., Wang, H., & Han, A. (2017). Molecular Basis of Substrate Specific Acetylation by N-Terminal Acetyltransferase NatB. Structure (London, England : 1993), 25(4), 641–649.e3. https://doi.org/10.1016/j.str.2017.03.003

**These are the references for the table**


**Below are references for potential text to be added**

Christensen, D. G., Xie, X., Basisty, N., Byrnes, J., McSweeney, S., Schilling, B., & Wolfe, A. J. (2019). Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions. Frontiers in microbiology, 10, 1604. https://doi.org/10.3389/fmicb.2019.01604

Outline of proposed changes[edit]

Acetyltransferase Substrate Gene (Human) Chromosome Location (Human) Gene Group Abbreviation
Histone Acetyltransferase Lysine residues on histones1 HAT12 2q31.12 Lysine acetyltransferases2 HAT
Choline Acetyltransferase Choline3 CHAT4 10q11.234 NA ChAT3
Serotonin N-Acetyltransferase Serotonin AANAT5 17q25.15 GCN5 Related N-Acetyltransferases5 AANAT5
NatA Acetyltransferase N-terminus of various proteins as they emerge from the ribosome NAA156 4q31.16 Armadillo like helical domain containing N-alpha-acetyltransferase subunits6 NatA6
NatB Acetyltransferase Peptides starting with Met-Asp/Glu/Asn/Gln8 NAA257 12q24.137 N-alpha-acetyltransferase subunits MicroRNA protein coding host genes7 NatB7

After the opening sentences, perhaps add sentence discussing the relevance of acetylation, and how it can impact the chemical properties of the substrate (like below, for example).

Acetylation serves as a modification that can profoundly transform the functionality of a protein by modifying various properties like hydrophobicity, solubility, and surface attributes. These alterations have the potential to influence the protein's conformation and its interactions with substrates, cofactors, and other macromolecules.