Coupling (electronics)

From Wikipedia, the free encyclopedia

In electronics, electric power and telecommunication, coupling is the transfer of electrical energy from one circuit to another, or between parts of a circuit. Coupling can be deliberate as part of the function of the circuit, or it may be undesirable, for instance due to coupling to stray fields. For example, energy is transferred from a power source to an electrical load by means of conductive coupling, which may be either resistive or direct coupling. An AC potential may be transferred from one circuit segment to another having a DC potential by use of a capacitor. Electrical energy may be transferred from one circuit segment to another segment with different impedance by use of a transformer; this is known as impedance matching. These are examples of electrostatic and electrodynamic inductive coupling.

Types[edit]

Electrical conduction:

Electromagnetic induction:

Electromagnetic radiation:

Other kinds of energy coupling:

See also[edit]

References[edit]

  1. ^ a b Alexander, Charles K.; O. Sadiku, Matthew N. (2013). Fundamentals of Electric Circuits (5th ed.). McGraw-Hills. p. 556. ISBN 978-0-07-338057-5. The circuits we have considered so far may be regarded as conductively coupled, because one loop affects the neighboring loop through current conduction. When two loops with or without contacts between them affect each other through the magnetic field generated by one of them, they are said to be magnetically coupled.